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Beginning with an LRC network with impedance function Z(cn), a sequence of 
iterated networks N~ with impedance functions Z~ k = l ,  2, 3 ..... is 
introduced. The asymptotic comportment of Z~ and the spectra of Nk are 
analyzed in terms of the Julia set of Z. An example is given of an iterated 
network associated with a cascade of period-doubling bifurcations. 
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1. I N T R O D U C T I O N  

This work was motivated in part by a paper of Domany, Alexander, Ben- 
simon, and Kadanoff ~1) and some papers by Rammal <2m) concerning the 
distribution of eigenvalues of a renormalizable lattice model, based on a 
Sierpinski gasket, of interest in percolation theory; see also Ref. 5. It was 
shown that the eigenvalues accumulate on the Julia set of a polynomial, 
and, in Ref. 6, that the spectral density could be described in terms of con- 
densed Julia sets. Similar observations, in the context of hierarchical lattice 
models in statistical physics, have been made by Derrida e t  al. (7) Here we 
try to understand why these phenomena occur, and what is the most 
general framework. 

The Sierpinski model can be viewed as a renormalizable mechanical 
system built of masses and springs. Since there is no resistance the eigen- 
values are imaginary. We consider more general dissipative systems with 
complex spectra. Since most network theory is formulated for electrical 
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rather than mechanical systems, we work in terms of LRC networks; these 
have mechanical counterparts. (8~ Also, in line with much of the literature, 
we use driving terms of the form e ~~ rather than e i~ whence real resonan- 
ces correspond to purely damped modes and pure imaginary resonances 
correspond to undamped oscillatory modes. 

In part this study is an application of Julia set theory (see Ref. 9 for a 
review), which we use to describe the spectra of iterated networks. It may 
also add to Julia set theory by bringing to bear the physical intuitions that 
attach to the characteristics of electromechanical systems to the behavior of 
iterates of rational functions which map the right half-plane to itself. 

In Section 2 we define the impedance function Z(o)) of an LRC 
network, recall its main properties, and show how it is calculated in terms 
of a ~b function. We also recall what is the dual of a planar network, and 
how to obtain its impedance. 

In Section 3 we introduce iterated networks. One starts with a 
network, replaces each inductor by the whole network suitably scaled, 
replaces each capacitor by the dual network suitably scaled, and obtains 
the iterate of the original network. Its impedance function is Z(Z(o~)). By 
repeating the process one obtains a sequence of networks {Nk} associated 
with the sequence of functions {Z~ k =  1, 2, 3,...}. 

In Section 4 we examine the asymptotic comportment of the impedan- 
ces and spectra of the iterated networks Ark. With the aid of analysis by 
Fatou (1~ completely describe what happens when deg Z = 1, and when 
there is no resistance in the original network. Furthermore, we show quite 
generally that the spectra of the iterated networks approach condensed 
Julia sets, while, on the component of the complement of the Julia set 
which contains the right half-plane, their impedance functions converge to 
a constant, which implies a purely resistive behavior for the "limiting 
network." This may be deduced from the Wolff-Denjoy theorem concern- 
ing the iteration of analytic functions which map the right half-plane into 
itself.(ll 13) 

In Section 5 we give an example of an iterated network involving a 

variable inductance 0 ~< L ~< 3 + 2 x/2, whose characteristics undergo a suc- 
cession of changes as L increases, associated with a cascade of period- 
doubling bifurcations which follows the now classical pattern. ~14 18~ An 
approximation to such a network could actually be built, and might be the 
basis of a switching device capable of many different responses, orderly or 
chaotic. As expected from the work of Douady and Hubbard ~t9) we find in 
parameter space a distorted Mandelbrot set. ~2~ 



Iterated Networks 41 

2. THE I M P E D A N C E  FUNCTIONS OF LRC NETWORKS 
AND THEIR DUALS 

Here we recall information about impedance functions which we use 
later. An L R C  network is a collection of interconnected branches, con- 
sisting of inductors, resistors, and capacitors, together with two dis- 
tinguished nodes labeled 0 and 1. If a current e ~t, where co may be complex 
and t is time, is applied across the nodes then the resulting voltage drop 
can be written 

Z(co) e ~~ 

where Z is a complex-valued function of co. Z is the impedance function of 
the network. 

Example 1. 
is 

The impedance function for the L R C  network in Fig. 1 

L R C c o  2 + Lco 

Z(co)  = LCco 2 + RCco + 1 

where L, R, and C are real nonnegative constants fixed by the inductance, 
resistance, and capacitance of the circuit. 

T h e o r e m  1 (see, for example, Ref. 21). The impedance function 
Z(co) of an L R C  network is a rational function of coe C. It obeys the 
following: 

(i) Z(co) is real when co is real; 
(ii) Z(cS) = Z(co), where the bar means complex conjugate; 

0 

1 

I 
Fig. 1. The LRC network in Example 1. 

I 

C 
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(iii) Re(Z(co))~>0 whenever Re(co)~>0, where Re means the real 
part. 

Conversely, any rational function Z(co) with properties (i), (ii), and 
(iii) is the impedance function of some LRC network. 

Z(co) also has the following properties: 
(iv) Z(co) has no poles where Re(co)> 0; 
(v) any pole on the imaginary axis is simple with positive residue; 

(vi) 1/Z(co) obeys (i), (ii), and (iii). 

An LRC network is termed planar if the network together with a line 
from 0 to 1, can be drawn in the plane with no crossing lines. By the con- 
struction of Bott and Duffin, (21) any LRC network is equivalent (in the 
sense that the two networks have the same impedance function) to a series- 
parallel LRC network, which is planar. (=~ Thus, without loss of generality, 
we restrict attention to series-parallel LRC networks. 

The impedance function may be calculated by direct solution of the 
system of ordinary differential equations which govern the circuit; these are 
obtained using Kirchoffs laws (23) and the constitutive equations 

d1 llo (a) V=L~-~,  (b) V = I R ,  (c) V = ~  I(s) ds 

for the voltage drop V across an inductance L, resistance R, and 
capacitance C, respectively, when a current I flows through the component. 

Equivalently, Z(co) may be derived with the aid of ~ functions. Let 
each branch of a network be labeled with a different complex variable 
a, b, c,...; and let ~b(a, b, c,...) be a rational function defined as follows. For a 
single-element network (see Fig. 2), 

11 
~ ( a ) = a  

121 

o I 
Fig. 2. A single-component network, whose 

branch is labeled a. 
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O 

1 
A 

1 

Fig. 3. Series connection of networks A and B. 

For a network which is the series connection of two smaller networks A 
and B (see Fig. 3), whose @ functions are ~A and qSB, we define 

q5 = q5 A + ~B 

Similarly, for a network which is the parallel connection of two smaller 
networks A and B (see Fig. 4), we define 

= Ifl)a I~)B/(I~)A AI- ~)B) 

Regardless of the order in which the network is considered to be composed 
of smaller networks, the resulting q~ function is the same. (22) 

I 

A 
0 1 

B 

Fig. 4. Parallel connection of networks A and B. 
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E x a m p l e  2. The ~ function for the labeled network in Fig. 5 is 

a . (b+c)  
qS(a, b, c) 

a + b + c  

T h e o r e m  2 (Ref. 22). The impedance function of a network whose 
4~ function is ~b(a, b, c,...) is 

z(~o) = r zb(~o), zc(co),...) 

where Za(co ) = Le~ if a corresponds to an inductance of L H, Za(co) = R if a 
corresponds to a resistance of R s and Za(co) = 1/(Coo) if a corresponds to 
a capacitance of CF .  This expression is also true when a, b, c,... label 
smaller networks, interconnected to form the whole network, with 
impedances Za(~O), Zb(C0 ), Zc(e~) ..... The symbols H, s and F signify 
Henrys, Ohms and Farads respectively. 

E x a m p l e  3. The network in Fig. 6 may be labeled as in Fig. 5, 
where a corresponds to a smaller network A whose impedance is ZA(co). 
The impedance of the whole network obeys 

zA(~o)(1/cco + R) 
z(co) - 

ZA(~o) + 1/C~o + R 

The dual network of a planar network is constructed as follows. (24) 
(i) Add the current source to the network. 

(ii) Place a node in each component of the complement (in the 
plane) of the network, including the unbounded component. 

(iii) For  each inductor of L H in the original network, connect a 

o I 
Fig. 5. 

CI 

The labeled network in Example 2. 

b 

C 

I 
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1 C 

o I 
Fig. 6. 

A 

The network in Example 3. 

l 
R 

capacitor of L F between the two nodes which lie in the two regions on 
whose common boundary the original inductor is situated. 

(iv) For  each resistor of R (2 in the original network, connect a 
resistor of ( l /R)s between the two nodes which lie in the two regions on 
whose common boundary the original resistor is situated. 

(v) For each capacitor of C F, connect an inductor of C H between 
the two nodes which lie in the two regions on whose common boundary 
the original capacitor is situated. 

'(vi) The distinguished nodes labeled 0 and 1 in the new network are 
those which lie in the two regions on whose common boundary the original 

L 

O 

C 

IT 
Fig. 7. The dual of the LRC network in Fig. 1. 
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current source is situated. The dual network of a planar L R C  network is 
also a planar L R C  network. 

E xa mpl e  4. The dual network of the network in Fig. 1 is shown in 
Fig. 7. 

T h o o r e m  3 (Ref. 22). Let ~(a, b, c,...) be the ~ function for a 
planar L R C  network of impedance Z(co), and let qs'(~, fl, ~,...) be the q~ 
function of the dual network, of impedance Z'(co). Here e corresponds to a, 
fl corresponds to b, and so on, as in the above construction. Then 

[~(a,  b, c,...)] -] = fiD'(a - 1 ,  b -1, C 1,...) 

and [Z(co)] 1 = Z'(o)). More generally, if a, b, c .... label smaller networks, 
interconnected to form the whole network, with impedances Za(CO), Zb(CO), 
Z,(  co ),..., then 

z ' (co)  = ,~ '(1/z~(co),  1/z~(~o), 1/z, .(~), . . . )  

= ,p(zo(~o), z~(~o), Zc(CO),.. .)-' = 1 /z (co )  

E xa mpl e  5. The dual labeled network of the labeled network in 
Fig. 5 is shown in Fig. 8. The q5 functions for the two networks are 

a" (b + c) f17 
~(a, b, c) - and @'(cq fl, ?2) = ~ + - -  

a + b + c  f l+7  

0( 

0 

Fig. 8. The dual labeled network of the labeled network in Fig. 5. 
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3. ITERATED NETWORKS 

In this section we introduce iterated networks. Given a planar LRC 
network N1 with impedance function Z(co), we construct a sequence of 
networks {Nk: k =  1, 2, 3,...} such that the impedance function of Ne is 
Z~ where 

2~ ~--- Z((D) 

Z~176 for k = 2 ,  3,... 

Nk +1 is constructed from Nk by performing simultaneously the follow- 
ing two steps. (i) Replace each inductor in Nk of L H by N1 with all branch 
impedances multiplied by L. (ii) Replace each capacitor in N~ of C F by the 
dual network N'I, with all branch impedances multiplied by 1/C. It is 
important to note that to multiply an impedance by a constant K means to 
multiply any inductance L and any resistance R by K and to divide any 
capacitance C by K. 

Example 6. Let N1 be the network in Fig. 1. Its dual N'I is shown 
in Fig. 7. Then N 2 is the network in Fig. 9, and N 3 is the network shown in 
Fig. 10. 

1 
L 

O 

17 
C/ 

LR i RI 
Fig. 9. The iterated network N 2 in Example 6. 
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0 

L' T~ L 

R 

Fig. 10. 

L 
C -  

T 
2 

Ik i 
�9 L R  

I 

-1-- ~c 
Y 

Vg-c 
I 

'l-c f 1 

i 
The iterated network N 3 in Example 6. 

E x a m p l o  7. In Fig. 11 we show a sequence of iterated electrical 
networks, and a corresponding sequence of iterated mechanical networks, 
for an impedance function 

LCco 2 q- 1 M C c o  2 -I- 1 
Z(co ) = (electrical) - (mechanical) 

Coo Ca) 

The schematics are the standard ones used by Olsen(S): Motion of 
masses is rectilineal in the horizontal direction, and connecting double lines 
represent rigid levers allowed to rotate around the marked dots. 

T h e o r o m  4. The impedance function of Nk is Z~ 

ProoL The result is true for k- -  1, so assume it is true for k = 1, 2, 
3 ..... K. Then the impedance function of Nk is 

( 1 1  1 )  
Z~ = cI) Llo),  L2co ..... Lpo), R I ,  R 2 ..... Rq,  Clo)  , C2o9 ..... C-to I 

where q5 is the ~ function for Nk. When we replace the inductors by N1 
and the capacitors by N'I as described above, we obtain the impedance of 
Nk+l to be 

( , 1 ) 
q) L~Z(o~) ..... LpZ(W),  R1, R~ ..... Rq, C~Z(w)  ..... CrZ(W)  

which is exactly Z~ 
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L 

J_ 
c 

L 2 C 

T_ 
c 

~--~ ~ T~~ ~ c 

- - [ ~ ~ . . j c  __ �9 

r 

f 

Fig. 11. A sequence of iterated electrical networks, and a corresponding sequence of iterated 
mechanical networks; see Example 7. 

4. THE SPECTRA A N D  I M P E D A N C E  F U N C T I O N S  OF 
ITERATED NETWORKS 

Let Z(a~) be the impedance function of an L R C  network NI. We write 
Z(o~) = P(o~)/Q(m), where P and Q are polynomials in o~, with no c o m m o n  
factors. The degree of Z is 

The spectrum of N1 is 

deg Z = Max{deg P, deg Q} 

~(N1)-= {o ~ ~: Z(o)-- ~} 

822/40/1-2-4 
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where (2 = C w { ~ } denotes the Riemann sphere. In this section we study 
the behavior of the impedance functions Z~ and the spectra a(Nk) of 
the iterated networks, when k becomes large. 

Let F: C --* C be a rational transformation. A k cycle of F is a set of k 
distinct points {zie C: i =  1, 2,..., k} such that 

F ( Z l ) = Z  2 , F(z2)=z3, . . . ,  F ( z k ) = z  I 

This k cycle is called attractive, indifferent, or repulsive according as the 
expansion factor I(d/d0))F~ I~ z~l is less than, equal to or greater than 
one, respectively. (If z~=oo, 
derivative.) 

We introduce the following 

~ =  {z~ 

~+={z~ 

Theorem 5. 

use lim . . . .  0)/F~ in place of the 

notation: 

C: Re z>~0} w {oo} 

C: R e z > 0 }  

S =  {zeC: Re z~<0} w {oo} 

S = { z ~ C : R e z < 0 }  

Let Z be the impedance function of an L R C  network, 
with deg Z = 1. Then the following are the only possibilities: (i) Z(0)) = 0); 
(ii) Z(0))=C/0),  some Ce(0 ,  oo); (iii)Z(0)) has exactly two fixed points 
0 ) l e ~  and 0 )2e~ ,  such that 0)1 is attractive and 0)2 is repulsive. The 
impedance functions Z~ and the spectra a(Nk) of the iterated networks 
Nk behave as follows. In case (i), N~= N1 consists of a unit impedance, 
Z~ and a(N~)= {oo} for allk. In case (ii), the even and odd 
sequences behave distinctly: the even sequence is the same as (i), and for 
the odd sequence Nzk + ~ = N~ consists of capacitance C, 
Z ~ 1)(0))= Z(0)) and a(N2k+ 1)= {0} for all k. In case (iii), Z~ con- 
verges uniformly to 0)1 on compact subsets of C\{0)2}; Z~ = 0)2 for all 
k; and either o-(Uk)converges to 0)2 or a (Uk)= {0)~} = {00} for all k. 

Proof. The positive-real properties of Z in Theorem 1 imply 

a0) + b 
Z(0)) - - -  # const 

c o + d  

where a, b, c, d are real nonnegative constants. Hence Z possesses two dis- 
tinct real fixed points 0)1 and co 2. Let M be a M6bius transformation which 
maps o l  to the origin O and 0)2 to oo. Then 

Z = M - l o L o M  
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where for some s e C, 

C ( z )  = s z  

Since co~ is real and  s = Z'(co~) it follows that  s is real. If  s =  +1  then 
Z(oJ)=M-l(M(o)))=co, and the case (i) behav ior  is readily verified. If 
s =  - 1  then Z(co)=M-l(-M(co))= C/co for some C e ( 0 ,  oo), where one 
also uses the fact that  Z(o))= (ae)+ b)/(cco + d) with a, b, c, d real and 
nonnegative.  The case (ii) behavior  is readily verified. 

If  Islr 1 then wi thout  loss of generali ty we can assume Ist < 1. Then  O 
is an at t ract ive 1-cycle for L, oo is a repulsive 1-cycle for L, and correspon-  
dingly co 1 is an at t ract ive 1-cycle for Z while co 2 is a repulsive 1-cycle for Z. 
By symmet ry  col, co2 e R w {oo }, and since Z(0)>~0 we must  have col e N 
and ~Oz e Y .  The convergence of Z~ to ml on C\co z follows at once 
f rom the convergence of L~ to O on C. Fur the rmore ,  the spec t rum of 
N k is the single poin t  {Z ~ k ( ~ ) }  = {e)eC2:ZOk(o))= oo}, which implies 
the final s ta tement  in the theorem. | 

P, 

5 
C 

0 
Fig. 12. The LR network in Example 8. 
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E x a m p l e  8. Let N1 be the LR network in Fig. 12, with impedance 
function 

LSco 
z (co )  = R + - -  

S + Lco 

where L, R, and S are positive constants. The fixed points are 

(attractive) col = - ~ ( ~ -  R S) 2 ~-11/2 
1 S R -  1 (repulsive) c o 2 = - ~ ( ~ -  S)--~[(S-R-S)2+4R---~S] ~/2 

Notice that cox > 0  and 092<0. The iterated network N k is represented 
schematically in Fig. 13. Its impedance function approaches the value col 
for all input frequencies except e) 2, at which the impedance is 0) 2. The spec- 
trum of Nk approaches {co2}. It is as though the network Ark forgets the 
single impedance element L k which it contains, in the infinite limit, except 
at one special driving frequency. The iteration provides a continued frac- 
tion representation of co~. 

The situation for deg Z = 1 will be seen to be echoed and beautifully 
elaborated in the case deg Z >  1: sequences of iterated networks in the 
hyperbolic case have spectra which converge to the Julia set of Z(co), while 
sequences of impedance functions {Z~ typically have subsequences 
which converge to piecewise constant functions. 

The Julia set J(F) of a rational map F: ~2 --* ~; of degree greater than 
one is the closure of {all repulsive k cycles of F: k = 1, 2, 3,...}. (25) Its com- 
plement C\J(F), which we call the Fatou set of F, is such that the sequence 
of iterated functions {F~ is equicontinuous, in the spherical metric, on 
some neighborhood of each point of C.\J(F) (see Ref. 9, for example). J(F) 
is a compact nondenumerable subset of q2, and if it is not equal to C then it 
contains no open subsets of C-- that  is, it has no interior. In general the 
Hausdorff-Besicovitch dimension of J(F) is noninteger, whence J(F) is a 
fractal as defined by Mandelbrot. (26) 

T h e o r e m  6. Let Z(co) be the impedance function of an LRC 
network, with deg Z >~ 2. Then J(Z)~ •. 

ProoL Suppose there is Zo e J(Z) with Re Zo > 0. Let U be an open 
neighborhood of Zo, with Re z > 0 for all z e U. Let C be any closed set in 
{z e C: Re z ~< 0}\Exc(Z), where Exc(Z) is the set of exceptional points of 
Z and contains at most two points. Then by Brolin, (27) Theorem 4.2, there 
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1T 

i I _ P ,  

I 
i . . . . .  

i 

4 -'a 
I 

I 

ol 
Fig. 13. Schematic representation of the iterated LR network N~ in Example 8. 

exists a finite positive integer n such that C c Z~ This is impossible 
because Z maps the right half-plane into itself. | 

To analyze {Z ~ one may use the Wolff-Denjoy theorem (~j 13) con- 
cerning the iteration of analytic functions which map N + into itself. This 
yields quite straightforwardly limk~ ~ Z~ col e [0, oe ] for all co e ~/+. 
However, more information is provided by Sullivan's classification which 
we briefly summarize next. 

A theorem of Sullivan (28'29) states that every component D of the 
Fatou set is eventually periodic under F. That is, there exist positive 
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integers m and k such that S = F ~ 1 7 6  The period is the 
smallest k such that this is true. Furthermore, Sullivan has completely 
classified the possibilities for the action of F~ on S. 

(i) Hyperbolic Case: For all z e S, 

lira F ~ l ( z ) = z j  for j = l ,  2,...,k, 
n ---~ o o  

where { z j + F  ~ I / ( S ) : j =  1, 2,.., k} is an attractive k cycle ofF. 
(ii) Parabolic Case: Same as (i) except that the k cycle is indifferent 

with 

(F~ = l 

and {z l ,  z 2 ..... Zk} ~ J ( F ) .  
(iii) Rotation Domain Case: F ~ acting on S is analytically conjugate 

either to an irrational rotation of the unit open disk, in which case S is 
called a Siegel disk, or to an irrational rotation of an open annulus, in 
which case S is called a Herman ring. 

In cases (i) and (ii) there is a critical point of F in U~= 1F~ 1)(S) �9 In 
case (iii) the boundary of S is contained in the closure of the set of all 
forward images under iterates of F of the set of critical points of F. 

The exceptional set of a rational transformation F: ~2-, ~2 of degree 
greater than one is 

Exc(F)=  {0)e~; :F  ~ 1(0))=0)} 

where F ~ - 1(0)) = {s ~ C2: F(s) = 0) }. F possesses at most two exceptional 
points. <27) 

Let { S n : n = l ,  2,3,...} be a sequence of subsets of C. Then by 
limn+ ~ Sn we mean the set of points z ~ C such that whenever J f  is a 
neighborhood of z, 

Y c~ Sn ~ ~ for infinitely many n 

The following theorem tells how the sequence of impedance functions 
{Z~ for the iterated networks Nk converge to a real constant for all 0) 
in a domain bounded by the Julia set of Z. It also states that, in general, 
their spectra a(Nk) converge to the Julia set Z(0)). 

T h e o r e m  7. Let Z(c~) be the impedance function of an L R C  
network N1, with deg Z >~ 2. Let P denote the component of the Fatou set 
of Z which contains ~ +. Then 

z ( P )  = P 
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and the action of Z on P is either hyperbolic or parabolic. There is a fixed 
point 0 ~< 091 ~ oo such that 

lim Z~ = 0.) 1 for all co e P 

If 0 < col < ov then the action of Z on P is hyperbolic. If 60 1 ~ {0, O0 } then 
either 0 < Z ' ( c o l ) <  1 or Z ' (col )= 1 and c o l e J ( Z  ). 

If Go r Exc(Z) then 

lim a(Nk)~_J(Z) 
k~oO 

with equality when oo c~ limk ~ ~ Z~ = ~ for all co e C \ J (Z) .  

Proof. That Z(P)  = P follows from the fact that P must be eventually 
periodic together with Z ( N ) c  N?. Suppose P is a rotation domain. Then 
Z ( N + ) c N  + implies P = ~ + .  N+ is not topologically conjugate to an 
annulus, so P is not a Herman ring. It is not a Seigel disk because then it 
would have a fixed point co I E (0, 00) with Z ' (co l )=  e 27zi0, and 0 irrational, 
which is not possible as Z'(co~) is real. Hence the action of Z on P is hyper- 
bolic or parabolic. The corresponding fixed point co, is real by symmetry, 
and obeys 0 ~< col ~< Go. 

If 0<col  < c~ then col r J(Z),  so Z on P must be hyperbolic. Ifco~ = 0  
then 0 < Z'(co)~< 1, since if col ~< 0 then by considering the Taylor series 
expansion of Z about O we find a set # V ' c ~  +, where ~ /  is a 
neighborhood of O, which is mapped into 5r  under Z. The parabolic case 
occurs when Z ' (col )=  1, and then col eJ(z) .  The possibility that co~ = oo is 
analyzed in the same way, by considering 1/Z(1/co) in place of Z(co). 

The last part of the theorem follows from Brolin, (27) Theorem 6.1 and 
Lemma 6.3, on noting that a ( ~ )  is just the set of kth-order predecessors 
of oo under Z, namely, 

Cr(~k)=Z~ ~ k + 1)(o-(N1) ) II 

Example 9. The impedance function for the L R C  network in 
Fig. 1, with R = C = 1, is 

It has the fixed points 

Lco 2 + Lco 
Z(co) = Lco2 + co + 1 

1 
co~ =~-~ ( L -  1 + [ ( L -  1 ) ( 5 L -  1)] ~/2 } 
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1 
022 = ~- i { L -  1 - F ( L -  1 ) ( 5 L -  1)] 1/2 } 

6 0 3 = 0  

For L >  1 we find 021e~ + is attractive with 

1 02~ 
Z ' ( 0 2 1 )  - 

L (1+091) 2 

while 023 is repulsive with Z'(023)=L. As L ~  1, 02 2 and 021 tend to 
coalescence with 023, producing a rationally indifferent fixed point at 0. For  
L ~> 1, 023 e J(Z),  but when 0 < L < 1,023 becomes attractive and separated 
from the Julia set. 

For  all 0 < L < ~ ,  ~ is a repulsive fixed point of Z(02). Hence by 
Theorem 7, a(Nk) converges to J(Z)  as k ~ ~ .  

Finally, we consider iterated LC networks networks which contain 
no resistors. Their impedance functions, in addition to obeying Theorem 1, 
have the property that they map the imaginary axis into itself, and thus can 
always be written 

Ak02 
Z ( 0 2 ) = A ~  ~, 022+a 2 

02 k=l  

where ak>0 ,  A k > 0  for k = l ,  2 ..... m, Ao~>0 and K~>0. We assume 
deg Z/> 2. Thus, Z(02) has simple poles with positive residues, in complex 
conjugate pairs on the imaginary axis. 

Following Fatou, ~1~ Chap. III, p. 225 et seq., one can make a com- 
plete analysis of the LC case. Let F be a rational transformation with 
deg F~> 2, such that F (~ )  = ~ and F(I) = I, where I denotes the imaginary 
axis. Then J(F) c I and one of the following possibilities holds: 

(i) F possesses two attractive fixed points 021 ~ +  and 022 ~:~-~ 
mirror images of one another in I; 

(ii) F possesses a single attractive fixed point 021 e I; 
(iii) F possesses a single indifferent fixed point of multiplicity two or 

three. 
Using this analysis together with the fact that for an LC network 

Z: [R --, ~, we obtain the following: 

T h e o r e m  8. Let Z(02) be the impedance function for an LC 
network N1, with degZ~>2. Let P be the component of C \ J ( Z )  which 
contains ~ + .  Then one of the following holds: 

(i) Z(02) possesses an attractive fixed point 0 <021 < 0% J ( Z ) = L  
and P = ~ + .  
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(ii) Either 0 or oo is an attractive fixed point, in which case 
J(Z) = qf is a Cantor set in I and P = C;\(g. 

(iii) Either 0 or oo is an indifferent fixed point of multiplicity three, 
J(Z) = L and P = J\I. 

To avoid many definitions and special cases, the following discussion 
to the end of this section is somewhat heuristic. 

The spectrum of an LRC network Ark is the set of eigenvalues of an 
associated matrix M~ determined by the combinatorial structure of Ark and 
by the numerical values of its inductors, resistors, and capacitors. If the 
structure is such that {Nk}k~=~ (or a suitable subsequence) converges to a 
limiting network N o ,  then N~ displays a renormalization property. On 
replacing all of the inductors and capacitors in Noo by N~ and its dual, as 
described above, one obtains N~ back again. The limiting matrix operator 
M ~ ,  if it exists, will also be renormalizable. Since M~  contains all obser- 
vable information about the characteristics of Noo we think of it as the 
Hamiltonian of the system; this is consistent with the work of Rammal (3) 
and KadanoffJ l) 

Under the assumptions of the last paragraph we show that the density 
of states for Moo is often the balanced measure (3~ 32) for Z(c0). Suppose 
oo n lim Z~ ~ for all me  C\J(Z). Then the eigenvalues of M, ,  of 
which there are (deg Z) k counting multiplicities, are just {Z~ and 
the corresponding density of states is the measure /~(k) which attaches 
weight (deg Z) -k to each eigenvalue. It follows from Ref. 33 (see also 
Ref. 34) that /l (k) ~ # weakly, where # is the balanced measure for Z(co). 
Recall that the support of/~ is J(Z), that # admits no point masses and that 

1 deg Z 

~ ( B ) = d e g  Z ~ # [Zs  
i=1  

for all Borel subsets B of C, where { Z i l :  i =  1, 2 ..... deg Z} is a complete 
assignment of branches of the inverse of Z. In such cases M~  possesses no 
discrete eigenvalues. A similar situation occurs when 

oo n lira Z~ r 
k ~ o o  

except that condensed balanced measures and discrete eigenvalues are 
obtained; cf. Ref. 6. These measures attach mass to a denumerable set of 
points, the preimages under Z of oo, whose set of accumulation points is 
J(Z). In such cases J(Z) carries none of the spectral mass. As an example, 
the renormalizable network of Rammal, referred to above, is associated 
with a condensed balanced measure which has been extensively studied. 



58 Barnsley, Morley, and Vrscay 

Other renormalizable networks whose spectra are typically condensed 
Julia sets can be constructed starting from an initial pair of networks N1 
and ~1, with impedance functions Z and 2, respectively. The kth network 
Nk is gotten from N k 1 by replacing each inductor of Nk_ ~ by ~r,  scaled 
by the corresponding inductance, and replacing each capacitor of Ark by the 
dual ~-'1, scaled by the corresponding capacitance. The impedance function 
2k of Nk is clearly 

2k(~o) : z ~ "o  2(co) 

When NI=N~,  we have 2k(Co)=Z~ and the previous situation is 
regained. Suppose that the matrix operator Mk corresponding to N~ con- 
verges to an operator moo, and Nk converges to N~o as k ~ oo. Then Noo is 
renormalizable in an obvious manner and, if oo is a fixed point of Z, the 
associated density of states will be a condensed balanced measure 
generated by Z(co) with condensation points equal to the pole locations of 
2(~o). 

The spectrum of such a renormalizable network can be formulated as 
the attractor of an iterated function system (IFS) of the form {{2, wl(z): 

I 
t t 

Fig. 14. The LR network N 1 in Example 10. 
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i = 1, 2,..., deg Z}, with condensation set L equal to the pole locations of Z; 
see Ref. 35 for example. A remarkable fact is that, in a certain sense, N~o is 
itself an attractor of an IFS. We explain this with an example. 

Example 10. Consider the LR network in Fig. 14, where L = R = 1. 
One way to represent Nk for large k is to successively nest the elements, 
using smaller and smaller symbols for the components, as suggested in 
Fig. 15. The limiting picture thus obtained is the attractor for the following 
IFS with condensation, (see Ref. 35 for terminology): 

{ [], Wx(X, y), w2(x, y), L} 

where [] is the unit square in [~ x l~ and L is the point set drawn with solid 
lines in Fig. 16. wl(x, y) is the affine map which takes [] onto EFT] and 
w2(x, y) is the affine map which takes [] onto [-~-].  By a theorem of 
Ref. 35 the unique attractor for the IFS is the desired drawing. 

Now surprisingly, the mechanical model of Rammal can similarly be 
described, since the Sierpinski triangle is the attractor for an IFS. What 
interests us deeply for the future is the interplay between the combinatorial 

I 

Fig. 15. Representation of N 2 using successively nested smaller components, for N1 in 
Fig. 14. 
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Y 
I 

I 

(0,1)/-_ (1,1) 

i 

' ' t ' .... 1~, i ~ 1  ', ' , '~2 ',' 
i I . . . .  I 

, , ] 
] I , 

1 I 

4--~ X 
(o, oT . . . . . . . . .  (1,o) 

Fig. 16. Diagram used to represent N~ as an attractor for an IFS with condensation. The 
condensation set L is drawn with solid lines. 

and geometrical structure for the IFS which describes a renormalizable 
system, and that of the IFS which gives its spectrum. 

5. A P E R I O D - D O U B L I N G  CASCADE 

Z ~  co oo In Section 4, we say that { ( )} ,= l  behaves in an orderly manner 
on P, the component of C\J(Z) which contains the open right half-plane. 
Indeed Z~ const uniformly on closed subsets of P. Here we show 
that the behavior of {z~176 on C\[J(Z) uP] can be very com- 
plicated. We do this with an example of an iterated network whose charac- 
teristics display, as the inductance parameter L is varied, a succession of 
changes which follows the now classical pattern, studied by Myrberg, (is) 
May, (14) Milnor and Thurston, (16) Feigenbaum, (is) and others, (s6'39) for 
iterated one-parameter families of unimodular functions typified by f;.(z)= 
z 2 - 2  for 2~ [0, 2]. 

We consider iterates of the network in Fig. 1, with R = C =  1 and 
variable inductance L. The impedance function is 

Lco 2 + Lco 

Z ( c o )  = Lco2 + CO + ] 
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In Example 9 we examined the action of Z on P. The critical points are 

L - L  
cl = 2L 1/2 - 1 and c2 = 2L1/2 + 1 

Here we are concerned with what happens when L > 1. cl lies in the basin 
of attraction of the attractive fixed point cot ~ ~ while c2 has a diversity of 
eventual behaviors, depending on the value of L. For  1 < L < 21 = 2.707..., 
c2 is drawn to an attractive real 1-cycle co2 lying in L~ . The basin of 
attraction for this cycle is bounded by a simple Jordan curve, and is 
illustrated in Figs. 17, 18, and 19, corresponding to L =  1.5, 2, and 2.5, 
respectively. The innermost region represents points which take less than 
six iterations to arrive within 0.05 of co2 (represented by 0 ) ,  the next 
darker annular region represents points which take from six to nine 
iterations to arrive within 0.05 of co2, while the darkest region represents 
points which require ten or more iterations. The outer boundary represents 
J(Z), and the exterior region represents points which lie in P. As L 
increases toward 2.707..., J(Z)  starts to pinch together at a countable 
infinity of pairs of points, just as happens for the Julia set of z 2 - 2 as 2 e 
approaches 0.75 .~37~ When L = 2 . 7 0 7 . - -  the pinching is complete, 0)2 is 
rationally indifferent and has joined J(Z)  at a pinch point which is on the 

Fig. 17. The Julia set for (Lco2+ LCO)/(Lo)2+ co + 1) with L = 1.5; see text. 



62 Barnsley, Morley, and Vrscay 

Fig. 18. The Julia set for (Lco2+Lo))/(LoZ+co+ 1) with L = 2 .  

Fig. 19, The Julia set for (Lo,?+L~)/(Le)2+~o+I) with L=2 .5 .  
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verge of giving birth to an attractive real 2-cycle. For 2 . 7 0 7 . ' - <  
L < 3 . 8 2 3 = 2 2 ,  c2 is drawn to an attractive real 2-cycle lying in ~ - ,  as 
illustrated in Fig. 20 for L = 3. J(Z) is now bubbly, and the interior of each 
bubble is drawn under Z ~ some k, into the 2-cycle of domains which con- 
tains the 2-cycle. Figures 21 and 22 show successive magnifications of part 
of Fig. 20, illustrating the fractal character of J(Z). For 3.823... < L < 
4.142"- = 23, the complement of J(Z) vo P is associated with an attractive 
real 4-cycle, derived from the 2-cycle by pitchfork bifurcation; while for 
4.142".  < L  < 4.214 = 24 it is associated with a real 8-cycle,... and so on. 
This first cascade of period-doubling bifurcations is completed before 
L=4.5 .  The sequence of successive ratios (2n__1-,~)/(2,,-,i~+1) 
approaches the Feigenbaum number 4.669..., as n -+ o9. 

For 0 ~< L ~< 3 + 2 x/2, Z(c0) maps the interval [ -  1, 0] into itself, 
advancing as L increases from a map which takes the whole interval to a 
single point to one which takes the interval 2:1 onto itself. Since Z(co) is 
rational, it has negative Schwartzian derivative, ~3*) and thus we have a one- 
parameter family of unimodular functions obeying the conditions used by 
Collet and Eckmann. ~36~ 

One may also consider the comportment of {Z~ for complex 
values of L in a neighborhood of [0, 6]. Figure 23 provides a parameter 
space description; it was obtained as follows. For each pixel in a 

Fig. 20. The Jul ia  set for (Lfo 2 q- Lo)) / (L( .o  2 -r- o) q- 1 ) wi th  L = 3. 
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Fig. 21. Blowup of part of Fig. 20. 

Fig. 22. Magnification of a bubble in Fig. 21. 
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Fig. 23. Parameter space map of Julia sets for (Lo) 2 + Lo))/(L~o 2 + ~o + 1); see text. It con- 
tains a distorted portion of the Mandelbrot set for z 2 -  Z 

240 x 240 grid, representing L ~ [0, 6] x [ -  3i, 3i], Z~176 was  computed. 
If the result lay within 0.1 of O then the pixel was colored grey, if it lay 
within 0.1 of the fixed point in ~'  + it was colored black, and otherwise it 
was colored white. 

Figure 23 appears to contain a distorted portion of the Mandelbrot  set 
for z 2 - 2 .  This suggests that, in the terminology of Ref. 19, Z(co) con- 
stitutes a Mandelbrot-like family of polynomial-like maps, Z(co) being con- 
jugate to z 2 -  2(L) in a vicinity of its Julia set, for L in a neighborhood of 
[1, 3 + 2  , ~ ] ,  say. A detailed discussion of the conjugacies involved, the 
dependence of 2 on L and the reason such families often occur has been 
given by Douady and Hubbard.  (~9) 

822/40/'1-2-5 
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